
Fakultät für Informatik
Der Technischen Universität München

Master’s Thesis in Information Systems

Implementing a Web Client

for Social Content and Task

Management

Björn Michelsen

Fakultät für Informatik
Der Technischen Universität München

Master’s Thesis in Information Systems

Implementing a Web Client for

Social Content and Task

Management

Implementierung eines Web Clients

für soziales Content- und

Aufgabenmanagement

Author: Björn Michelsen
Supervisor: Prof. Dr. Florian Matthes
Advisor: Felix Michel
Date: September 15, 2016

I assure the single handed composition of this master’s thesis only supported
by declared resources.

Munich, September 15, 2016 Björn Michelsen

Acknowledgments

I would like thank my advisor Felix Michel for his support. Furthermore, I
would like to thank Thomas Reschenhofer and the SocioCortex team for the
collaboration regarding the SocioCortex back-end and API.

Abstract

Complex, knowledge-intensive processes are becoming increasingly important
for modern enterprises. The support of such processes through information
systems yields a huge potential for their increased efficiency and effectiveness.
SocioCortex, the social information hub, is one approach for such a collab-
orative information system. It builds upon the concept of hybrid wikis, an
end-user-oriented way to create, store, and distribute knowledge in both un-
structured and structured ways. It also aims to include task centered collabo-
ration aspects. The idea behind SocioCortex is to provide a back-end as a basis
for dedicated clients, for example for generic content and task management,
modeling, or visualization. The objective of this thesis is the implementation
of a web client for one of those use cases, the generic content and task man-
agement. The approach of this thesis is based on a review of existing work
regarding hybrid wikis, task centered collaboration approaches and initial de-
sign and implementation examples of the content manager. Furthermore, the
implemented result are evaluated through tests with enterprise stakeholders
familiar with Enterprise Architecture Management (EAM).

Contents

Acknowledgments

Abstract

Outline of the Thesis

I. Introduction 1

1. Introduction 2
1.1. Introduction . 2
1.2. Motivation . 3
1.3. Approach . 3

II. Related Work 5

2. Related Work 6
2.1. Wikis . 6
2.2. Semantic Wikis . 6
2.3. Hybrid Wiki . 7
2.4. Darwin . 9
2.5. SocioCortex . 10

2.5.1. Conceptual Model of SocioCortex 10
2.5.2. Clients for SocioCortex 12
2.5.3. Previous Work used as the Foundation of this Thesis . . 14

Contents

III. Approach 16

3. Use Cases 17
3.1. User Authentication . 17

3.1.1. Logging in . 17
3.1.2. Logging out . 17

3.2. Workspaces . 18
3.2.1. Creating a workspace . 18
3.2.2. Deleting a workspace . 18
3.2.3. Renaming a workspace 18
3.2.4. Adding a workspace to favorite workspaces 19
3.2.5. Removing a workspace from favorite workspaces 19
3.2.6. Navigating between workspaces 19
3.2.7. Editing workspace settings 19

3.3. Entities . 19
3.3.1. Creating an entity . 20
3.3.2. Deleting an entity . 20
3.3.3. Renaming an entity . 20
3.3.4. Duplicating an entity . 21
3.3.5. Moving an entity . 21
3.3.6. Editing the content of an entity 21
3.3.7. Managing files of an entity 22
3.3.8. Editing entity settings 22

3.4. Attributes . 22
3.4.1. Editing an attribute . 23
3.4.2. Creating a free attribute 23
3.4.3. Editing a free attribute 23
3.4.4. Deleting a free attribute 23

3.5. Tasks . 23
3.5.1. Creating new tasks on an entity 24
3.5.2. Editing a task . 24
3.5.3. Deleting a task . 24
3.5.4. Completing a task . 25
3.5.5. Skipping a task . 25

Contents

3.5.6. Assigning an attribute to a task 25
3.5.7. Removing an attribute from a task 25

3.6. User Profile . 26
3.7. Data Tables . 26

4. Design Challenges 28
4.1. Use Case Specific Design Challenges 28

4.1.1. Workspaces . 28
4.1.2. Tasks . 29

4.2. General Application Design Challenges 31
4.2.1. Material Design . 31
4.2.2. Mockups and Design Guidelines 32

5. Technical Implementation 33
5.1. Architecture and Technologies 33

5.1.1. Package Management . 34
5.1.2. Build Management . 34
5.1.3. Important Front-end Libraries 36

5.2. Overview of the Application Architecture 37
5.3. Behavioral Model . 39
5.4. Technical implementation of selected use cases and requirements 43

5.4.1. Content Editing Interface 43
5.4.2. Images in Entity Content 45
5.4.3. Links in Entity Content 47

5.5. Discussion of general technical implementation aspects 47
5.5.1. SocioCortex API . 47
5.5.2. AngularJS . 48

IV. Evaluation 49

6. Evaluation 50
6.1. Methodology . 50

6.1.1. Usability Test . 50
6.1.2. Questionnaire . 51

Contents

6.2. Participants . 52
6.3. Scenario . 52

6.3.1. Creating entities . 52
6.3.2. Editing attributes . 53
6.3.3. Editing entity content 53
6.3.4. Completing tasks . 53
6.3.5. Skipping tasks . 53
6.3.6. Uploading files . 53
6.3.7. Adding and editing free attributes 54
6.3.8. Searching entities . 54
6.3.9. Renaming entities . 54

6.4. Results . 54
6.4.1. Usability Test . 54
6.4.2. Questionnaire . 56

6.5. Potential Improvements . 56
6.5.1. Improving the entity creation process 56
6.5.2. Improving the editing of attributes 58
6.5.3. Improving the naming of entities 60

6.6. Discussion . 60

V. Conclusion 61

7. Conclusion and Outlook 62
7.1. Conclusion . 62
7.2. Outlook . 62

Bibliography 64

A. Appendix i

List of Figures viii

List of Tables ix

Contents

Outline of the Thesis

Part I: Introduction

Chapter 1: Introduction

Gives a short introduction about the context and motivation behind this work.
It introduces the idea behind SocioCortex and its relation to the web client
developed in the course of this thesis. Furthermore, the chapter will outline
the approach.

Part II: Related Work

Chapter 2: Related Work

The chapter provides insights in the related work of this thesis. It includes
and overview of the hybrid wiki approach and work that forms the foundation
of this thesis.

Part III: Implementation

Chapter 3: Use Cases

Lists and details the use cases that the implemented web client supports. The
described use cases are grouped together by major components or system as-
pects they relate to.

Chapter 4: Design Challenges

Discusses design challenges that were identified during the development of the
content manager. The challenges are discussed on a use case level and a general
application level.

Contents

Chapter 5: Technical Implementation

Outlines the general architecture and technologies used to implement the con-
tent manager, gives an overview of the high level application structure, dis-
cusses the behavioral model and discusses technical challenges.

Part IV: Evaluation

Chapter 6: Evaluation

Describes the approach and results of an initial evaluation. The evaluation was
conducted with six participants in the form of usability test combined with a
post-test questionnaire.

Part V: Conclusion

Chapter 7: Conclusion and Outlook

Provides a brief conclusion of this work and outlines an outlook for further
improvements and extensions of the content manager.

Part I.

Introduction

1

1. Introduction

1.1. Introduction

With the rapid growth of information available in enterprises, it becomes in-
creasingly difficult for them to manage the use of this information effectively
and efficiently [GBD09]. In the past, various tools from the area of information
and communication technology (ICT) have been used in order to aid enterprise
stakeholders in handling this information, especially in support of knowledge-
intensive processes. One of such approaches is the wiki, a web-based tool to
capture, share, and organize information collaboratively [LC01].

However, a downside of a wiki is that is does not support certain use cases and
query operations that require more structure. Thus, an iteration on the basic
wiki concept is the semantic wiki, which adds structured data to otherwise
unstructured wiki pages [MNS11]. Core aspects of semantic wikis are that
they allow users to add properties to pages and organize the pages themselves
in ontologies using classes [Br12].

[MNS11] proposes the hybrid wiki as a further improvement to the semantic
wikis, stating a complicated syntax, unfamiliar concepts, and a missing clear
communication of the benefits of structured data as key drawbacks of semantic
wikis. The hybrid wiki aims to mitigate those issues and provide a lightweight
way to manage data and information in enterprise. Core concepts used in
the hybrid wikis are attributes for capturing structured data and type tags,
allowing users to express a class-instance relationship between wiki pages and
explicit types.

[HKM15] proposes an alternative wiki approach, focusing on a process-oriented
view and extending the wiki with structural elements such as attributes, tasks,

2

1. Introduction

and types. The goal of this approach is to provide end-users with a lightweight
way to model processes. The approach was implemented as the DarwinWiki.

1.2. Motivation

Two of the in Section 1.1 proposed extensions of the semantic wiki, the hybrid
wiki and approach of the process-oriented Darwin Wiki, are combined into a
single system called SocioCortex, the social information hub [SE14].

One of the main ideas behind SocioCortex Platform is to have a core applica-
tion, the SocioCortex Backend, which provides a REST-API. This REST-API
is used by different clients to provide access to SocioCortex for different use
cases and end-users. This approach differs from previous monolithic applica-
tions.1

Due to their specificity, the individual clients can help to provide only the
required functionality for a use case, eliminating unnecessary complexity and
increasing the usability. This is a fundamentally different approach as opposed
to the main predecessors of SocioCortex.

1.3. Approach

The problem at hand is the development of one specific client, the SocioCortex
Content Manager. As described, the client consumes the REST-API provided
by SocioCortex Backend to support specific use cases. In terms of the content
manager, the covered use cases concern mostly the management of data, espe-
cially in the form of manipulating data in concepts such as entities, attributes,
tasks, and workspaces.

1http://www.sociocortex.com/

3

http://www.sociocortex.com/

1. Introduction

The scope of this thesis includes the implementation of the SocioCortex Con-
tent Manager for a set of documented use cases, given certain constraints
regarding the design and technologies. The content manager will combine as-
pects of the hybrid wiki and Darwin Wiki. A part of the approach is also the
evaluation of the implemented system by conducting tests with participants
familiar with enterprise architecture management (EAM).

4

Part II.

Related Work

5

2. Related Work

This chapter outlines the related work of this thesis. It includes the the general
wiki concept, semantic wikis, and hybrid wikis. Furthermore, it describes
the related work done in the context of SocioCortex Platform, including its
clients.

2.1. Wikis

A wiki is a type of web-based software, that allows users to collaboratively
edit information displayed as a web page in a web browser. A page in a wiki
can contain text and hypertext, linking to other wiki pages [LC01].

MediaWiki [Meda] as shown in Figure 2.1, is a specific implementation of such
a wiki system. It is a popular software used in large-scale project such as
Wikipedia [Wik]. MediaWiki supports many of the basic functionality ex-
pected from a wiki such as the editing of pages, linking between pages, search-
ing for pages and many more.2

2.2. Semantic Wikis

Semantic wiki enhance the traditional wiki concept presented in Section 2.1
by adding structured elements and processing capabilities [Br12]. Structured
elements are especially represented by classes and properties. Wiki pages
themselves can be an instance of a class and contain properties, which are
key-value pairs of data that might be restricted by type. Using queries, the

2https://www.mediawiki.org/wiki/Manual:MediaWiki_feature_list

6

https://www.mediawiki.org/wiki/Manual:MediaWiki_feature_list

2. Related Work

Figure 2.1.: MediaWiki Homepage running on MediaWiki software [Meda]

structured data captured in a semantic wiki can be used for reasoning or in-
ference [Gi13].

Just as for the traditional wiki described in Section 2.1, several implementa-
tions of semantic wikis exist, some of which [Br12] evaluate based on various
parameters.

A popular semantic wiki is the semantic extension for MediaWiki, called Se-
mantic MediaWiki [Sem]. It extends MediaWiki with semantic elements such
as types, properties, templates, and querying capabilities.3.

2.3. Hybrid Wiki

The hybrid wiki is an enhanced concept of the semantic wiki proposed by
[MNS11]. It aims to improve shortcoming of the semantic wiki such as a

3https://www.semantic-mediawiki.org/wiki/Help:User_manual

7

https://www.semantic-mediawiki.org/wiki/Help:User_manual

2. Related Work

complicated syntax, unfamiliar concept, and non-obvious benefits of the addi-
tional structure. The hybrid wiki aims to mitigate those issues and provide a
lightweight way to manage data and information in enterprise. Core concepts
used in the hybrid wikis are attributes for capturing structured data and type
tags, allowing users to express a class-instance relationship between wiki pages
and explicit types [MNS11].

[Re16] iterated upon the hybrid wiki concept and enhanced the meta model as
described in Figure 2.2.

Figure 2.2.: Hybrid wiki meta-model [Re16]

The meta-model defines concepts that relate to instance on the left side and to
the model on the right side. Workspaces are the only concept which cannot be
clearly assigned to either side as a workspace is related to both. A workspace is
a high-level unit of organization and contains entities and entity types. Entities

8

2. Related Work

are a core concept in a hybrid wiki, containing the structured and unstructured
information in a hybrid wiki. Entities are instances of entity type, which are
defined the model [Re16].

Attributes are key-value pairs that allow entities to store structured data.
Every entity has to be part of an entity. Additionally, attributes are defined
by the attribute definition, setting constraints of the attribute name and its
multiplicity [Re16].

2.4. Darwin

Darwin is a wiki proposed by [HKM15]. It focuses on allowing non-expert users
to structure knowledge-intensive processes in a lightweight and user-friendly
way. In order to achieve this, it offers several structural elements as opposed to
a traditional wiki as described in Section 2.1. The elements it provides include
attributes, tasks, and types. Tasks are the most relevant difference from a
model perspective as it is an uncommon concept in semantic wikis. The idea
behind tasks is that a task can be related to certain attributes. The goal of a
task is to fill out the value of the related attributes after which a task is seen as
complete [HKM15]. Figure 2.3 shows the user interface of the Darwin system
that showcases the structural element with their visualization.

9

2. Related Work

Figure 2.3.: The Darwin Wiki user interface showcasing structural wiki ele-
ments and their visualization [HKM15]

2.5. SocioCortex

SocioCortex is a platform to support knowledge-intensive processes. It builds
upon the hybrid wiki and the task-oriented Darwin [SE14]. As opposed to its
predecessors with a monolithic architecture, the SocioCortex Backend provides
a REST-API which different types of clients can leverage.

2.5.1. Conceptual Model of SocioCortex

Figure 2.4 gives an overview about the most important concepts in SocioCor-
tex. On a high level, concepts can be categorized by whether they are part of
the model or instance. The following will give a short description of individual
concepts and their relation to each other:

10

2. Related Work

• Workspace: A workspace is a high-level organizational unit that contains
all instance and model data. There can be several workspaces, each con-
taining their individual set of data, including entities, attributes, tasks,
entity types, attribute definitions, task definitions, and stages.

• Entity : An entity contains unstructured and structured data. The struc-
tured data is represented as attributes and tasks.

• Attribute: An attribute contains structured data and is part of an entity.
Additionally, an attribute can be assigned to a task.

• Task : Tasks are a core concept to provide a structured workflow in filling
out attributes [HKM15]. Tasks can be contained in entities and in turn
have attributes.

• EntityType: Each entity is an instance of an entity type. An entity type
is like an blueprint for an entity for defining attribute definitions and
task definitions.

• AttributeDefinition: Like the relationship between an entity and entity
type, an attribute definition is like an blueprint for an attribute.

• TaskDefinition: Like the relationship between an entity and entity type,
an task definition is like an blueprint for a task.

• Stage: Task definitions can be assigned to stages, making it possible to
structure processes, a concept from Darwin.

Section 3 will elaborate many of the concepts as it describes the system be-
havior in of the proposed SocioCortex Content Manager in detail.

11

2. Related Work

Figure 2.4.: The conceptual model of SocioCortex4

2.5.2. Clients for SocioCortex

In this section the three SocioCortex clients from the default client suite are
presented. They are all currently in active development.

2.5.2.1. SocioCortex Content Manager

The SocioCortex Content Manager is the topic of this thesis and provides a
generic interface to manipulate the data of the SocioCortex Backend. This
client is not concerned with the modeling of data, such as the creation of
entity types. It supports the editing of data such as CRUD operations on
workspaces, entities, attributes, and tasks. It is part of the default client suite
in SocioCortex as depicted in Figure 2.5.

4http://www.sociocortex.com/
5http://www.sociocortex.com/

12

2. Related Work

Figure 2.5.: SocioCortex architecture with content manager5

2.5.2.2. SocioCortex Modeler

The SocioCortex Modeler as shown in Figure 2.6 is another client. It is con-
cerned with the data modeling perspective of SocioCortex. The client supports
tasks such as the creation an management of entity types, attribute definitions,
task definitions, and derived attributes. [Sc16]

13

2. Related Work

Figure 2.6.: SocioCortex Modeler[Sc16]

2.5.2.3. SocioCortex Visualizer

The SocioCortex Visualizer as shown in Figure 2.7 is a client dedicated to the
visualization of data stored in SocioCortex. It is based on a modular dashboard
architecture, enabling end-users to quickly analyze data. [Bü15]

2.5.3. Previous Work used as the Foundation of this

Thesis

Work done in the context of SocioCortex provided direct input for the develop-
ment of the content manager. First of all, the bachelor thesis [Ka15] provided
the general design guidelines and specific mockups, as shown in Figure 2.8,
for many parts of the web interface. Additionally, the initial implementation
in the context of the master thesis [Os15] provided the a first implementa-
tion of the client with a focus on the task management experience. A student
project in the context of the SEBIS chair provided the implementation of the
activity feed functionality. Moreover, an abstraction of the SocioCortex REST
API called SC-Angular [SCA] provided the basis for the communication of the
SocioCortext Content Manager with the SocioCortex Backend.

14

2. Related Work

Figure 2.7.: SocioCortex Visualizer[Bü15]

Figure 2.8.: Example Mockup for the SocioCortex Content Manager [Ka15]

15

Part III.

Approach

16

3. Use Cases

This chapters gives an overview of the functionality the implemented content
manager should provide. This is achieved with descriptions of the systems’ use
cases. The use cases are grouped by major components or aspects they relate
to. Some of them have been described in [Os15] and [Ka15], both of which
were used as the main input for this thesis. However, use cases have been
added, extended or changed in the process of this work. They are documented
to provide an complete overview of the capabilities of the implemented content
manager.

3.1. User Authentication

3.1.1. Logging in

Users have the ability to log into the content manager in order to get access
to restricted information in the system. If a users wants to log in, he has to
provide an e-mail address and password in order to authenticate.

3.1.2. Logging out

If a user wishes to give up the privileges to view restricted information, he can
log out of a session and undo a previous authentication.

17

3. Use Cases

3.2. Workspaces

Workspaces provide a mechanism to organize information. They act as a high-
level container for entities and aid in the retrieval of information. Workspaces
behave like folders, meaning entities and entity related models such as at-
tributes, tasks, and files can only be in one workspace at the same time.

3.2.1. Creating a workspace

A precondition for a user being able to create new workspace is to be authen-
ticated and having the appropriate permissions. Then, a user can choose to
create a new workspace, having to set the workspace name as a required ar-
gument. The creating of a workspace automatically creates an entity in that
workspace that acts as the homepage of that workspace.

3.2.2. Deleting a workspace

If a workspace and all contained information such as entities and their data cap-
tured in attributes, tasks, files, and unstructured content is no longer needed, it
can be deleted. A user with the appropriate permissions can delete a workspace
and all its containing information. This operation is destructive and cannot
be undone.

3.2.3. Renaming a workspace

Each workspace is required to have have a name. This name can be changed
by an user with the appropriate permissions. In order to complete a rename
operation, the user has to provide a new name. This name is not allowed to
be empty.

18

3. Use Cases

3.2.4. Adding a workspace to favorite workspaces

Workspace can contain meta information whether the workspace is a favorite
workspace or not. The user is provided with specific ways that allows them to
navigate the set of favorite workspaces more easily than others.

3.2.5. Removing a workspace from favorite workspaces

Analogous to adding a workspace to a list of favorite workspaces, a user can
remove a workspace from this list if its favorite status is no longer required.
This operation can by undone by adding the workspace to a favorite workspace
again.

3.2.6. Navigating between workspaces

A user can navigate between workspaces. At all times, only a single workspace
can be selected. If a workspace is selected, the user is only presented with the
information contained in this workspace. The precondition for navigating to a
specific workspace is to have at least read permissions of the workspace.

3.2.7. Editing workspace settings

Workspace settings provide users with a mechanism to change the permissions
for the entire workspace. The permissions include the ability to read and write
data in the specific workspace.

3.3. Entities

Entities allow users to capture and store structured, semi-structured, and un-
structured data. The main way to handle structured and semi-structured data
is using attributes of entities. The various types and use cases for attributes
are described in detail in Section 3.4 . Rich-text entity content provides the

19

3. Use Cases

main approach to handle unstructured data in entities. An entity can also be
called a page or wiki page, a term commonly used in other wiki systems such
as MediaWiki [Medb]. The terminology has been changed in the revision of
the hybrid wiki meta-model in [Re16].

3.3.1. Creating an entity

A precondition for creating an entity are the appropriate permissions by the
user who wants to create the entity. If the correct permissions exist, the user
can create a new entity and has to set the name of the entity as a required
information. Optionally, the entity type can be set in this step. If the user
does not set a specific entity type, the entity will be created with the default
entity type Text Page. If an existing entity is currently selected, the newly
created entity will be a subpage of the selected entity.

3.3.2. Deleting an entity

A user can delete an entity, if the information contained in the entity is no
longer required. Deleting an entity deletes all content, attributes, tasks, files,
and other associated information. Additionally, all subpages of that entity
including all their related data such as content, attributes, tasks, files and
other information are deleted too. This is a destructive operation and cannot
be undone.

3.3.3. Renaming an entity

The entity name, which has to be set at least initially during creation of an
entity, can be edited. To edit an entity name the user has to provide a new
valid name for the entity. A valid entity name is any non-empty string. The
renaming of an entity does not influence the behavior of references to that
entity. For example, if the entity content or attribute of an entity contains a
reference to another entity, this reference is still valid after a rename operation.

20

3. Use Cases

This reduces the amount of manual work necessary by a user to rename a page
in comparison to traditional wiki systems, as individual references do not need
to be checked and updated manually.

3.3.4. Duplicating an entity

Any entity can be duplicated. In order to duplicate an entity, the user is
required to set a name and parent for the duplicated entity. The system
provides the user with default values for the name and parent of the duplicate.
This action only duplicates the entity selected for duplication without any
child entities.

3.3.5. Moving an entity

Moving an entity allows users to set a new parent for an entity. The new
parent is the only attribute required for this operation. This operation moves
an entity with all its associated data and child entities.

3.3.6. Editing the content of an entity

The content of an entity plays a central role in capturing and storing unstruc-
tured content. Users can capture information in rich-text, meaning they can
use a variety of elements and formatting options in order to style and struc-
ture the content. The precondition for editing entity content are adequate
write permissions on that entity. The most basic element in the content is the
text block, which can be inserted, edited and removed. Additionally they can
be styled with inline formatting options such as bold, italics, and underline.
Another element is the image, which can be inserted by the user. The image
can either be uploaded from a locally stored file, a reference of an existing
image file, or an externally hosted image file. Furthermore, links can be used
to either created references between entities or to an external resource such as
a website.

21

3. Use Cases

3.3.7. Managing files of an entity

Files of any type can be attached to an entity. A user can upload a one or more
locally stored files to an entity. After the files are successfully uploaded, any
user with at least read permissions can view all the files attached to the entity
and download the files individually. Additionally, files that are not required
anymore can be deleted from an entity. As mentioned in the use case in Section
3.3.2, multiple files can be deleted at once if the whole entity is being deleted.

3.3.8. Editing entity settings

Entity settings provide the user with a way to change permissions and other
aspects of a specific entity. The permissions include the ability to read and
write data. Permissions are inherited to child entities.

3.4. Attributes

Attributes provide a way to capture structured data. There are three classes
of attributes: Free attributes, typed attributes, and derived attributes.

The first class of attributes are free attributes. They can be defined in the con-
tent manager and are not defined in the type of an entity. The idea behind free
attributes is to provide users with the flexibility of capturing structured data
without the need to first define it in entity types, thus reducing overhead.

The second class of attributes are typed attributes and can only be defined
in the SocioCortex Modeler. However, the value of typed attributes can be
edited and is part of the use cases.

The third class of attributes are derived attributes. They are automatically
calculate using MxL expressions. Their existence and corresponding MxL ex-
pression can only be defined in the SocioCortex Modeler.

22

3. Use Cases

3.4.1. Editing an attribute

The value of attributes can be edited. The editing interface adapts to the type
of the attribute. For example, an attribute of the type Date shows the user a
date specific interface as opposed to an attribute of the type Text.

3.4.2. Creating a free attribute

The content manager allows users to create free attributes. They are not de-
fined in the model of an entity using the SocioCortex Modeler but by using the
content manager itself. Free attributes allow users to the capture of structured
data which later might be included into the model as a typed attribute.

3.4.3. Editing a free attribute

Free attributes do not contain information about the type of information they
will hold. As such, a user can enter information in an unrestricted way. In the
process of entering such information, the content manager is trying to ‘guess‘
the implicit type of the information and support the user appropriately.

3.4.4. Deleting a free attribute

A user can delete a free attribute, if the structured information it represents
is no longer required. Deleting a free attribute leads to the deletion of the
attribute value as well as the attribute itself. This is a destructive operation
and cannot be undone.

3.5. Tasks

Tasks provide a way to structure a workflow. The main concept behind tasks
is that they are related to attributes in such a way, that they define whether an
attribute or a set of attributes contains information as described by a task.

23

3. Use Cases

For example, a workspace might contain an entity called Master thesis with a
typed attribute Abstract and a task Define abstract. If the attribute Abstract
is assigned to the task Define abstract, there is a specific relationship between
both. An example how this relationship works is that if the attribute Abstract
contains a value, the task Define abstract is automatically completed.

3.5.1. Creating new tasks on an entity

Tasks can either be created using the SocioCortex Modeler or using the Socio-
Cortex Content Manager. A task created as a task definition in the SocioCor-
tex Modeler can be viewed and edited by the SocioCortex Content Manager.

3.5.2. Editing a task

The metadata of a task can be edited. This includes progress of a task ex-
pressed in a percent value, a start date and end data expressed as date values
which can be edited with a date picker, an owner and expertise of a task. The
task progress is automatically calculated if the task contains attributes. For
example, if a task contains two attributes, and only one of them contains a
value, the task progress is set to 50 percent. The progress can also be manually
overridden by a user.

3.5.3. Deleting a task

A task that is defined by a task definition cannot be delete in the content
manager. However, if this task if not required, it can be skipped as described
in Section 3.5.5. If a task is defined in the content manager, it can be delete
by users with access and permissions for that entity.

24

3. Use Cases

3.5.4. Completing a task

A task can be completed and there are several way to achieve this. First of all,
if a task contains task attributes, it is automatically completed if all attributes
contain a value, for example because a user has set the value of the attributes.
Additionally, a user can complete a task by using the Complete action in the
content manager. The last approach to complete a task is to manually set the
metadata progress of a task to 100 percent.

3.5.5. Skipping a task

A user can skip a task. This action can be manually triggered in the content
manager and leads to a state in which the task has not to be completed using
any of the approaches as described in the previous section, Section 3.5.4 . The
skipped status of the task is recorded by the system.

3.5.6. Assigning an attribute to a task

Any attribute of an entity can be assigned to a task. The connection between
the task and an attribute leads to the progress status of a task being connected
to the value stored in the attribute. For example, if a task Define thesis has
two attributes Define start date and Define end data, the progress status of
the task Define thesis will be 50 percent, if one of the two attributes contains
a date.

3.5.7. Removing an attribute from a task

If a task has one or more attributes assigned to it, those attributes can be
removed. Removing an attribute from a task revokes any effect of the rela-
tionship as described in Section 3.5.6.

25

3. Use Cases

3.6. User Profile

The user profile provides basic information about the currently logged in user.
First of all, the user profile displays the profile picture of the user. Addition-
ally, metadata such as email, the full name of the user, expertise, and tasks
are presented. The representation of tasks is split into current, future, and
completed tasks.

3.7. Data Tables

Data tables provide tabular, spreadsheet-like overview of entities. For naviga-
tion purposes, it is possible to sort, filter, and search entities based on their
metadata such as the entity name and the values of their attributes. Addi-
tionally, it is possible to edit the values of entities directly in the data tables,
without having to navigate to the individual entities first. This makes it easy
to edit the attributes of several entities without loosing context. Figure 3.1
shows a first implementation of data tables. The development of them is out-
side the scope of this thesis. However, they will be implemented by Daniel
Elsner and subsequently integrated into the content manager.

26

3. Use Cases

Figure 3.1.: The current implementation of data tables

27

4. Design Challenges

This chapter documents the design process and challenges. The content is
separated by use case specific and general system aspects.

4.1. Use Case Specific Design Challenges

Use case specific design aspects reference the use cases elaborated in Chapter 3
and describe design challenges and considerations for workspaces and tasks.

4.1.1. Workspaces

Users navigate workspaces with a tabbed navigation in the application bar.
There is no restriction on the number of workspaces a user can have access
to. Thus, if a user has access to a large number of workspaces, they do not fit
into the the horizontal space of the application bar. Material design proposes
the use of swipe gestures or dropdowns in order to handle this case. However,
those solutions don’t scale with large numbers of tabs. The suggestion of thesis
providing mockups and guidelines [Ka15] to address this issue was by offering
a large dropdown inconsistent with the material design language. However,
this approach does not scale either. Thus, a different approach is suggested
and implemented, the use of a dedicated workspace overview page. In case
there are too many workspaces to be displayed in the horizontal space of the
application bar, the user can select a new tab called All Workspaces. This
navigates him to a list of all available workspaces. As it is a dedicated page,
it scales well with many workspaces, as it offers vertical scrolling to navigate
them. The main drawback is that the user potentially looses the context of the

28

4. Design Challenges

current task, as a completely new page is loaded. Future improvements might
be an incremental search to aid the retrieval of large number of workspaces
and different visualizations such as a grid-based over a list-based view of the
workspaces.

4.1.2. Tasks

A user can view tasks in a list next to the entity content. Similar to the
problem discussed in Section 4.1.1, a large number of tasks provides a design
challenge, especially since every tasks contains additional meta data. The
previous design was a list of tasks with the metadata responsively hidden in
an edit menu as shown in Figure 4.1.

A suggested improvement that has been implemented in the client is different
trade-off between vertical and horizontal space as shown in Figure 4.2. The
tasks metadata now takes up more vertical space. Additionally, clicking on
the task title collapses and expands the metadata, leading to a potentially
faster navigation if the interaction is known. The interaction of collapsing and
expanding tasks this way can be either suggested with tooltips, an onboarding
process, or through a product documentation.

29

4. Design Challenges

Figure 4.1.: Design of tasks in the ScoioCortex Content Manager [Ka15]

Figure 4.2.: Updated design of tasks in the ScoioCortex Content Manager

30

4. Design Challenges

4.2. General Application Design Challenges

This section is concerned with the design challenges of the application in gen-
eral. It focuses on a discussion of the Material Design language and the mock-
ups and design guidelines that have been used as the foundation of this the-
sis.

4.2.1. Material Design

Material Design is a design language developed by Google [Mat] and offers a
set of guidelines for designing the experience and interface of digital products.
It is used internally by Google for their ecosystem of digital products and
available for third parties.

Material design has been chosen as the design language for the content manager
before the implementation of this work started. The mockups and design
guidelines [Ka15] that formed the foundation of the content manager adhered
to many aspects of the material design language.

There are several challenges when Material Design is applied to the content
manager. One challenge is the use of whitespace. Material Design clearly sets
guidelines on how much whitespace is added to which element using paddings
and margins. Angular Material applies those standards.

This generally leads to nicer aesthetics, but reduces the information density
on any given screen. In case of the content manager, which often requires to
display lots of information at once, it leads to a reduced overview as users have
to scroll more to consume the same amount of information.

Currently, the solution to this problem is a customization of the Angular Mate-
rial specifications, reducing the amount of margins and paddings when neces-
sary. However, this leads to inconsistencies with the Material Design Language,
inconsistencies within the application, and will make it difficult to maintain
consistencies across different SocioCortex clients.

31

4. Design Challenges

4.2.2. Mockups and Design Guidelines

The thesis [Ka15] formed the basis of the technical implementation of the con-
tent manager. It provided both the general requirements and specification in
terms of high-fidelity mockups. During the initial phase and the development
process several shortcomings of the existing work were identified. An exem-
plary listing of those shortcoming and recommendations are presented in the
following in order to aid future work. One shortcoming is the completeness of
the mockups with regards to the described use case. For example, a critical
use case of the proposed content manager is the WYSIWYG editing interface.
While it was named as a requirement, it was not specified via mockups. Due to
the missing specification, such use cases had to be designed and implemented
nearly ad-hoc and untested. Another shortcoming is the completeness of the
mockups and description with regards to the complete user flow. While it is
important for a development process to have a complete specification of the
user flow for specific tasks, it was often not possible to deduce how the user
flow should look due to missing textual descriptions or mockups. In order
to increase product quality in the future complete, correct, up-to-date, tested
mockups could provide a valuable basis for future development.

32

5. Technical Implementation

This chapter describes technical implementation of the SocioCortext Content
Manager. This includes the general setup and technologies used for the devel-
opment, an overview of the application architecture, as well as the discussion
of general technical challenges and aspects.

5.1. Architecture and Technologies

This section describes the structure and technologies used to build the content
manager. Figure 5.1 gives a short overview of the architecture which are
explained in further detail in this section.

SocioCortex Content Manager

SocioCortex Backend

REST API

Package Management Build Management Application

npm

bower

gulp AngularJS App

SC-Angular

Angular Material

AngularJS

gulp-uglify

gulp-autoprefixer

gulp-webserver

gulp-livereload

gulp-angular-filesort

gulp-concat

Figure 5.1.: Overview of the architecture and technologies of the content
manager

33

5. Technical Implementation

5.1.1. Package Management

Two package managers are used for the client, NPM [NPM] and Bower [Bow].

NPM, the Node Package Manager, is an open source package manager in the
NodeJS ecosystem [NPM]. In this thesis it is used to install and manage
dependencies necessary for the build process. The build process is described
in detail in the next section, Section 5.1.2.

Bower is an open source package manager for client-side libraries [Bow]. Im-
portant dependencies managed with Bower are described in Section 5.1.3.

5.1.2. Build Management

Gulp is an open source streaming build system being used for the build man-
agement of this project [Gula]. Several gulp plugins are being used in order to
automate and optimize parts of the build process.

5.1.2.1. gulp-concat

For the production build, gulp-concat [Guld] concatenates all JavaScript files
into a single file and all compiled CSS files into a single file. This reduces
the number of individual HTTP requests in order to increase the page loading
speed.

5.1.2.2. gulp-uglify

For the production build, gulp-uglify [Gulg] minifies JavaScript files in order
to increase the page loading speed by having to server smaller files.

5.1.2.3. gulp-autoprefixer

Gulp-autoprefixer [Gulc] automatically adds browser-specific CSS prefixes in
order to increase the cross-browser compatibility of an application.

34

5. Technical Implementation

5.1.2.4. gulp-angular-filesort

The concatenation and minification of AngularJS file in the wrong order of-
ten leads to errors. Gulp-angular-filesort [Gulb] automatically sets the correct
order in which AngularJS files and dependencies have to be in for the concate-
nation and minification to work correctly.

5.1.2.5. gulp-inject

Gulp-inject [Gule] automatically injects CSS and JavaScript files into a spec-
ified HTML. As this works fully automatic, potential errors by including or
missing to include files are reduced. Additionally, it saves time not having to
update dependent CSS and JavaScript files manually.

5.1.2.6. gulp-webserver

In development, gulp-webserver [Gulh] allows the local serving of the applica-
tion. As this plugin can be configured with other gulp commands, operations
such as injecting CSS files into the HTML can be done automatically before
serving the HTML files.

5.1.2.7. gulp-livereload

In development, gulp-livereload [Gulf] allows the automatic reloading of served
HTML, CSS, and JavaScript files. This intends to speed up development,
because a reload does not have to be triggered manually once a change to a
source file has been made.

35

5. Technical Implementation

5.1.3. Important Front-end Libraries

5.1.3.1. AngularJS

AngularJS [Angb] is a client-side JavaScript framework for building single page
applications. The framework offers constructs such as directives, services, and
controllers to build and manage large-scale applications. Version 1 of the
framework is used in the implementation of the content manager, as the new
and improved version is not released as a stable version yet.

5.1.3.2. Angular Material

Angular Material [Anga] is an open source JavaScript library that implements
large parts of the Google Material Design Language [Mat] as reusable Angu-
larJS components. This makes it fast and easy to adapt the Google Material
Design Language to an AngularJS application without having to translate the
design guidelines manually. Most of the functionality of Angular Material is
provided via directives which can be used in the application.

5.1.3.3. SC-Angular

SC-Angular [SCA] is a JavaScript library that provides an abstraction of the
SocioCortex Backend REST-API for AngularJS 1 applications. Instead of
interacting with the API directly by sending HTTP request or using a general
purpose abstraction layer, SC-Angular provides additional convenience when
interacting with SocioCortex.

The library consists of eight services and two directives. The services are:

• scAuth, which provides functions for user authentication such as logging
a user in and out.

• scData, which allows to manipulate data objects such as workspaces or
entities. Due to the high dominance of manipulating data in the content

36

5. Technical Implementation

manager, this is one of the most importance services provided by SC-
Angular in the context of this thesis.

• scModel, which provides access to objects such as entity types and at-
tribute definitions. As the SocioCortex Modeler is responsible for al-
lowing the manipulation of such data, it is not relevant for the content
manager.

• scMxl, which provides functionality regarding the MxL query language.

• scPrincipal, which provides functionality regarding user accounts such as
retrieving meta data about the currently logged in user. This is especially
used for the user profile component of the content manager.

• scRoute, which provides routing functionality.

• scSearch, which allows access to the global search of SocioCortex. This
service is used to the global search of the content manager.

• scUtil, which provides access to various auxiliary functions.

The two directives scHref and scSrc are also available. They are used for
rendering images and links in the interface.

5.2. Overview of the Application Architecture

This section gives an overview application architecture by describing major
components in the system. AngularJS 1, the version used for the implementa-
tion of the content manager, does not support a component-based application
architecture. However, some system functionality has been grouped by using
AngularJS specific constructs as controllers, directives, and services. Further-
more, folders and naming conventions are used to map this structure to the
application in order to mimic a component-based architecture. Figure 5.2 gives
an overview of the described components.

37

5. Technical Implementation

SocioCortex
Content Manager

Main Navigation

Main Content

Workspaces

User Management

User Profile

Search

Feed

Data Tables

Attributes and Tasks

Files

Figure 5.2.: Overview of the components of the content manager

Main Navigation is concerned with the tree-based navigation of pages in a
sidebar. It includes the ability to search for pages by title in the scope of this
navigation.

Main Content is concerned with rendering and providing functionality for
entities. It contains the general layout of an entity with its unstructured and
structured content.

Workspaces includes all workspace related functionality, for example CRUD
operations on the workspaces or workspace settings.

User Management contains general user-related functionality such as log-
ging a user in and out.

38

5. Technical Implementation

User Profile includes all user profile related functionality such as the ren-
dering of the user profile page with the meta data and tasks of a user.

Search provides functionality for the global search. As opposed to the lo-
cal search in the Main Navigation component, it searches full-text across all
workspaces.

Attributes and Tasks includes the functionality for attributes and tasks of
entities. They are grouped together, as they are closely related in state and
behavior.

Files includes all file-related functionality such as uploading and downloading
files in various places of the application.

Feed includes all feed-related behavior and has been implemented before this
thesis. It is integrated in application as it’s own highly separated component.

Data Tables will include the implementation of the data tables once they
are integrated from another project that is dedicated to the development of
the data tables.

5.3. Behavioral Model

This section gives a brief overview of the SocioCortex integrated model and its
relationship to the content manager. Figure 5.3 shows the integrated model of
the SocioCortex Backend. Grey concepts especially refer to the SocioCortex
Content Manager, green ones to the SocioCortex Modeler, and white ones to
the SocioCortex Visualizer or other aspects. As the content manager only
focuses on providing a specific set of functionality instead of mapping all of
the functionality of the SocioCortex Backend, only a part of the model is
relevant for the content manager. Concepts with a high relevance for the

39

5. Technical Implementation

content manager are workspaces, entities, files, attributes, and tasks. Concepts
such as entity type, attribute definition, task definition, have less relevance
for the content manager as most of their behavior is mapped to SocioCortex
Modeler Client. Table 5.1 gives an overview of certain operations and their
results on the model.

40

5. Technical Implementation

Concept Operation Results
Workspace Create A workspace is created with only a single en-

tity of type text page that acts as the home-
page of the workspace.

Workspace Delete All associated data, including entities, at-
tributes, tasks, entity types, attribute defi-
nitions, and task definitions are deleted.

Entity Create An entity with a relationship to the respec-
tive workspace is created.

Entity Move All associated files, attributes, tasks, and
subpages are moved.

Entity Duplicate All associated files, attributes, tasks, are
copied. Subpages are not copied.

Entity Delete All associated files, attributes, tasks, and
subpages are deleted.

Attribute Create The attribute is created and associated with
the entity it was created on. Only free at-
tributes can be created using the content
manager.

Attribute Delete The file is deleted and not associated to an
entity anymore.

File Create The file is created and associated with the
entity it was created on.

File Delete The file is deleted and not associated to an
entity anymore.

Task Complete The progress metadata is set to a value of
100.

Task Skip The status about the skipping is recorded in
the task.

Task Delete Associated attributes are not deleted.
Entity Type Delete Even though deleting an entity type can only

be done in the SocioCortex Modeler, it can
have effect in the content manager. If an
entity type is delete and there is a entity of
that type accessible in the content manager,
this entity fill get the default type text page.

Attribute Type Delete If an instance of the attribute definition ex-
ists, it is converted to a free attribute instead
of a typed attribute. This is an operation
that can only be done in the SocioCortex
modeler.

Table 5.1.: Table about results of selected operations on the SocioCortex inte-
grated model relevant for the content manager

41

5. Technical Implementation

Figure 5.3.: The behavioral model of SocioCortex. Grey denotes concepts pre-
dominantly relevant for the content manager, green for modeler,
white for the visualizer and other clients.

42

5. Technical Implementation

5.4. Technical implementation of selected use

cases and requirements

This section gives an overview of the technical implementation of selected use
cases and requirements implemented in the content manager, that provided
specific challenges. The documentation of those challenges will aid in the
continuous development of the content manager.

5.4.1. Content Editing Interface

Editing unstructured entity content requires a web-based editor. There are
already good existing solutions in the form of open source web-based editors.
There are several requirements that have to be fulfilled by such an editor in
the context of the requirements of the content editor:

Open Source The editor has to be released under and open source license.
The goal is to reduce cost and make the technical implementation easier to
understand as the source code and technical discussions are easily available.
Additionally, this requirement permits the content manager itself to be open
source.

Rich-Text The unstructured content of an entity should be able to include
various formatted media such as formatted text or images. Thus, the editor
has to provide such rich-text formatting capabilities.

WYSIWYG and HTML View The editor has to provide an WYSIWYG
editing interface. In such an interface the objects can be manipulated directly
similar to MS Word, providing an easy to use editing experience. Additionally,
it should be possible to switch between the WYIWYG editing interface and
an HTML source view, providing the ability to manipulate HTML directly.

43

5. Technical Implementation

Extendability As the editor is supposed to be extended with SocioCortex-
specific functionality such as creating links between entities and integrating
with the SocioCortex API to upload and download files and images. Thus, the
editor it needs to be easily extendable.

Compatibility with AngularJS While any web-based editor can be poten-
tially used in an AngularJS project, it might require an effort to make it work
within the paradigms and constraints of AngularJS. Thus, the editor should
be easy to integrate.

Documentation The editor should be well documented to make integration
into the content manager and the subsequent customization and extension as
easy and fast as possible.

Cross-Browser Support The editor should work in as many browser as pos-
sible in order to provide a high coverage of browsers in which the whole Socio-
Cortex Content Manager might be used.

Active Development The editor should be actively developed to ensure con-
tinuous cross-browser support, fixing of known issues, and the potential exten-
sion with new features that might be required in the future.

Several editor alternative have been evaluated, with TinyMCE [Tin], Trix
[Tri], Quill [Qui] fulfilling all the requirements to varying degrees. In the
end, TinyMCE has been selected due to its good integration with AngularJS
and documentation with regards to the official documentation and existing in-
formation in various online communities. The integration between AngularJS
and TinyMCE is provided by the library ui-tinymce [?], wrapping the editor
in an AngularJS directive.

44

5. Technical Implementation

5.4.2. Images in Entity Content

Entities are able to contain references to images in their unstructured content.
Those images are supposed to be rendered inline within the editor content.
This content is serialized and persisted as a string of HTML. If the application
wants to render the unstructured content, there are several step involved. The
following shows an example of rendering an the entity content of a requested
entity, with an visual overview given in Figure 5.4:

1. The content manager requests an entity using SC-Angular.

2. SC-Angular makes the request to the SocioCortex API in order to re-
trieve the entity.

3. The API returns the entity object, which includes a serialized string of
HTML. However, images are not included in this string as an HTML img
tag with a src attribute set to the path of the image. They are included
as an img tag with a custom sc-src attribute that contains the ID to the
image file.

4. For each image in the HTML string, another request has to be made
using the encoded ID in order to retrieve the image and set the resulting
data to the img tag. This is simplified with the scSrc directive provided
by SC-Angular.

5. The SC-Angular scSrc directive request the individual images.

45

5. Technical Implementation

Figure 5.4.: Overview of the steps involved in rendering images inside entity
content

The reason why only the IDs are encoded in the img tag is that images can
have permissions. When individual request have to be made using the API,
the permission can be checked on each image, ensuring only users with the
correct permissions will be able to get the images.

A major problem with this approach is the usage in conjunction with the con-
tent editor. On load, the editor TinyMCE expects a string of HTML to render
in it’s editable interface. It does not provide functionality for preprocessing
the HTML before rendering. Thus, before initializing TinyMCE, the HTML
string needs to be processed in such a way, that it contains HTML image tags
with the final src attribute set.

An approach that failed was the usage of the AngularJS $compile service. The
idea behind using the $compile service was to use it to compile the entity
content HTML string with the SC-Angular scSrc directive and setting the
resulting HTML string as the input for the TinyMCE editor. However, there
was no reliable way to load the editor only once string was compiled.

The chosen solution was to manually parse the HTML string, extract the IDs
from the sc-src attributes, make request for the resources and generate the
final HTML string which is then passed to the editor. The same functionality
and encoding and decoding is used for modifying images inside the content

46

5. Technical Implementation

editor, the the string that is saved has to contain the IDs in the same format
as the result form the API.

5.4.3. Links in Entity Content

Links in the entity content behave like images as described in Section 5.4.2.
Each link is serialized as an HTML anchor tag and has the ID to the linked
resource encoded as a custom HTML attribute sc-href. The directive scHref
is provided by SC-Angular in order to request the actual URL to the linked
resource. The problems of this approach were solved in the same way as for
images, manually extracting the IDs.

5.5. Discussion of general technical

implementation aspects

This section discusses general technical implementation aspects which are not
use cases specific. This includes the discussion of the SocioCortex API and
AngularJS as the main framework used in the development of the content
manager.

5.5.1. SocioCortex API

A common problem with the use of the SocioCortex API was the general
REST problem of over-fetching of data. In most implemented views, only
a small set of data returned from API endpoints is needed. Unneeded data
sent over the network reduces the performance of the application on limited
network connections such as on mobile devices. Approaches such as GraphQL
try to solve this problem and might be an alternative to solve this issue in the
future.

Another problem with using the API documentation during development was
the inability to search it effectively. For example, it was a common use case

47

5. Technical Implementation

to search for specific properties returned in different endpoints. This was only
manually possible due to a lack of search. This is a shortcoming of the Open
Source API documentation framework Swagger, which has not implemented
such as functionality yet. However, there is already a pull request to sup-
port this.This should be added as soon as possible to the SocioCortex API
documentation, as it becomes available.

5.5.2. AngularJS

Usage of version 1 of the AngularJS framework was a requirement of the im-
plementation for the content manager. Additionally, the existing code was was
written in the same version. There are many drawbacks in AngularJS 1 that
are supposed to be addressed in the second version or in other comparable
JavaScript frameworks such as ReactJS. Such drawbacks include the lack of
support for component-based architecture or performance issues in large scale
applications with many data bindings. As a switch to AngularJS 2.0 once it
is stable or a comparable JavaScript framework will likely require a complete
rewrite of the application, it should be evaluate if such a change is appropriate
before implementing more functionality in the content manager.

48

Part IV.

Evaluation

49

6. Evaluation

An evaluation was conducted in order to gain initial insights into the general
usability of the content manager in terms of task completion and satisfaction.
The goal was to identify major usability issues and areas of improvement. This
evaluation was conducted together with the evaluation of SocioCortex Modeler
as part of the master thesis [Sc16]. The same participants were evaluating first
the modeler client and then the content manager. While the setup of the
evaluation was designed for two independent evaluations, the evaluation of
the modeler might have influenced the results of the content manager. This
possible effect was considered and neglected due to the estimations that effects
might not impede the goal of uncovering major issues.

6.1. Methodology

The methodology of the evaluation consisted of two parts, a usability test
and a post-test questionnaire. The usability test focused on participants using
the content manager to solve task from a fictitious scenario. The post-test
questionnaire combined a standardized test with custom questions.

6.1.1. Usability Test

The usability test consisted of five predefined tasks in a scenario the user had
to solve in a live system of the content manager. During the test, the think
aloud method [LR93] was used, meaning the test participant was asked to
formulate observations and issues verbally for the moderator. In some cases,
the participant was probed during the test with follow-on question in order to

50

6. Evaluation

gain maximum insight into encountered issues or potential improvements. A
drawback of the think aloud method and the probing questions are their impact
on the cognitive processes of the participant and quantitative measurements
such as the task completion time. However, as the test was designed to identify
major usability issues and not measure or improve quantitative metrics, those
drawbacks were neglected.

6.1.2. Questionnaire

An post-test questionnaire formed the second part of the evaluation. In this
part, a standardized usability questionnaires was combined with three custom
open ended questions. A standardized usability questionnaires was used over
a fully custom one in order to potentially gain more reliable results and get
insights to into the usability compared to other systems. Several standardized
questionnaires have been evaluated, with the system usability scale (SUS)
[Bo96] being chosen for it’s simplicity, duration and widespread use. According
to [Bo96], the questions of the SUS are:

1. I think that I would like to use this system frequently

2. I found the system unnecessarily complex

3. I thought the system was easy to use

4. I think that I would need the support of a technical person to be able to
use this system

5. I found the various functions in this system were well integrated

6. I thought there was too much inconsistency in this system

7. I would imagine that most people would learn to use this system very
quickly

8. I found the system very cumbersome to use

9. I felt very confident using the system

10. I needed to learn a lot of things before I could get going with this system

51

6. Evaluation

Finally, three custom open ended question were used to elicit previously un-
known feedback and gain insights about the relative usability changes in com-
parison the the predecessor system Tricia. The complete questionnaire is doc-
umented in Appendix A.

6.2. Participants

A set of six participants were selected for the evaluation. The number of par-
ticipants was intentionally kept small in order to quickly identify the most
pressing issues, fix them, and continue testing with the improved version. The
participants were part of two groups, members of the SEBIS chair and in-
dustry partners. All participants had experience with Enterprise Architecture
Management (EAM).

6.3. Scenario

The participants were given a scenario with five tasks. The scenario revolved
around the administration of masters theses with the participant being set in
the role of a university faculty member. The tasks included the following small
subset of basic operations in the system:

6.3.1. Creating entities

Participants are tasked to perform basic CRUD operation on entities. Part
of the first task is the creation of such an entity of a specific type, a master
thesis, in the scope of a predefined workspace.

52

6. Evaluation

6.3.2. Editing attributes

Next, participants have to edit the values of several attributes with different
types (e.g. a text attribute and a date attribute) of the entity that was created
by them.

6.3.3. Editing entity content

Additionally, participants are asked to edit the rich-text content of the master
thesis entity using the editor. An underlying goal of the task is to create and
save a small amount of text, an abstract of the master thesis.

6.3.4. Completing tasks

Predefined tasks of the entity were to be completed by the participant. This
could be achieved in several ways such as setting triggering the action explic-
itly.

6.3.5. Skipping tasks

A single task is shown as not necessary. The participant has to skip the task
instead of completing it as the task before.

6.3.6. Uploading files

Participant are tasked to upload a PDF file found locally on the computer of
the evaluation to a specified entity.

53

6. Evaluation

6.3.7. Adding and editing free attributes

After completing the upload, the participant has to create a new free attribute
supposed to hold a reference to the PDF file that was uploaded in the previous
task.

6.3.8. Searching entities

Another task is to find an entity not created by the participant. Several ways
are possible to achieve this, but the intended goals of the task was to test the
usability of the global search.

6.3.9. Renaming entities

After finding a specific entity using search, the participant is supposed to
rename the title of the entity.

The complete scenario and list of tasks are documented in Appendix A.

6.4. Results

This chapter summarizes the results of both evaluation parts, the usability test
and the questionnaire.

6.4.1. Usability Test

The complete results of the usability test are documented in Appendix A. The
following will give a short summary of the most important issues.

54

6. Evaluation

Creating entities The implemented interaction design to create a new entity
is to use the material design specific more icon in the application bar and
choosing new entity from the appearing context menu. Most participants
discovered the way to create an entity on their own. However, most of them did
not expect the action at the current location and took a lot of time to explore
the interface in order to find the action. Another problem was the naming of
menu item to create an new entity. In the first three tests, the naming was
Create Subpage, while the participants expected Create Entity. It was changed
after the first three tests, leading to the following participants not having any
problems understanding it.

Editing attribute values The implemented interaction design for editing at-
tribute values is to put each value that is supposed to be editing in an explicit
edit mode using a context menu located at every attribute. Participants con-
sistently expected an edit-in-place behavior of the attribute value. They tried
to click on the attribute name and/or value and expected to be able to edit it.
All of the participants managed to find the context menu but expressed their
desire to edit the attributes inline.

Renaming entities The implemented interaction design for renaming enti-
ties requires users to navigate to a entity and chose the action rename from a
dropdown menu. However, most participants navigated to an entities, entered
the edit mode, and tried to click on the title. They were expecting an edit-in-
place like behavior, allowing them the edit the entity title inline. After this
approach did not work, most figured out using the intended drop down menu
after some exploration.

Adding values to a free attribute The implemented interaction design for
adding a value to a free attribute of an entity is to put the attribute in the edit
mode and using the autocomplete menu to enter the desired value, with the
type of the free attribute being guessed. Only one of the participants managed
to complete the task by himself. All off the participants either expressed

55

6. Evaluation

their desire to declare the type of the free attribute manually first or have the
behavior of the system better communicated in the user interface.

6.4.2. Questionnaire

The complete results of the questionnaire can be seen in appendix A. The final
SUS score, the measure by which the usability of a system according to SUS is
determined, ranges between 0 and 100 [Bo96]. The content manager scored on
average across all 6 participants 65.4 points. According to two studies this is
slightly below the average of 68 or 68.2 points respectively [Sa11] [BKM09].

The most recent study, [Sa11], took 500 evaluations into account and deter-
mined an average score of 68 [Sa11].

Another study, [BKM09], determined an average of 69.5 points across 3463
evaluations. However, this includes evaluations of several user interface types.
For the evaluations regarding the web interface type, the type most relevant in
the context of this evaluations, the average SUS score was 68.2 points across
1433 evaluations [BKM09].

6.5. Potential Improvements

This section shows several potential improvements that could be made on the
content manager. The improvements are mere suggestions that should be
validated and tested before potentially implementing them.

6.5.1. Improving the entity creation process

Currently, creating an entity was a difficult task for most participants. If
creating an entity is selected as a primary action that users should be able to
perform easily and quickly, there are several ways this could be improved. One

56

6. Evaluation

Question Average SUS Scale SUS Contribution
1 I think that I would

like to use this system
frequently

3.50 2.50

2 I found the system un-
necessarily complex

2.33 2.67

3 I thought the system
was easy to use

3.33 2.33

4 I think that I would
need the support of a
technical person to be
able to use this system

2.67 2.33

5 I found the various
functions in this sys-
tem were well inte-
grated

3.00 2.00

6 I thought there was
too much inconsis-
tency in this system

2.17 2.83

7 I would imagine that
most people would
learn to use this
system very quickly

3.00 2.00

8 I found the system
very cumbersome to
use

1.83 3.17

9 I felt very confident
using the system

4.00 3.00

10 I needed to learn a
lot of things before I
could get going with
this system

1.67 3.33

Total Average: 65.42

Table 6.1.: Table with SUS results

57

6. Evaluation

suggestion is the use of a floating action button as shown in Figure 6.1. The
prominent color, placement, and consistency with the material design language
could provide an improved solution.

Figure 6.1.: The floating action button pattern from material design language
[FAB]

6.5.2. Improving the editing of attributes

Editing attribute values was often seen as an inconvenience by the partici-
pants. A common suggestion by the participants was to change the way an
attribute is set into an edit mode, by allowing an edit-in-place interaction de-

58

6. Evaluation

sign. The participants noted that editing several attributes this way might be
too cumbersome.

Currently the user flow for successfully editing an attribute is the following:

1. Navigate to the entity that contains the attribute that should be edited

2. Click on a button next to attribute

3. Select the action edit from the dropdown

4. Edit the value of the attribute

5. Confirm the edit with a click on a done button next to the attribute

With an edit-in-place design, the interaction would be the following:

1. Navigate to the entity that contains the attribute that should be edited

2. Click directly on the attribute name or value

3. Edit the value of the attribute

4. Click outside the value of the attribute to confirm the edit

Another alternative is a combination of both approaches:

1. Navigate to the entity that contains the attribute that should be edited

2. Click on a button that sets all attributes of that entity in an edit state

3. Edit the value of one or more attributes

4. Confirm the edit with a click on a done button, saving the values of all
attributes

The three alternative approaches should be evaluated and tested separately in
order to make a decision or find a better alternative. Currently, the third al-
ternative shows the biggest promise as the interaction is clearly communicated
via dedicated buttons, potentially making the interaction easier to understand
and more predictable for user not familiar with the edit-in-place interaction
pattern.

59

6. Evaluation

6.5.3. Improving the naming of entities

A naming of entities should be agreed upon and consistently used throughout
the content manager and potentially other clients. The participants of this
evaluation were more familiar with the term entity as opposed to page or
subpage. However, all participants had knowledge of concepts used in the
predecessor systems Tricia. If future users should be able to understand the
concept without prior knowledge it should be evaluated which term to use.
Additionally, the terms and concept could be explained in the application or
supporting resources such as training material.

6.6. Discussion

As a general note, the results from the SUS are eventually invalid. During the
test, participants consistently noticed in several cases that they have filled out
the wrong answer in the SUS due to wrong understanding or remembering of
the scale. While a common template for the SUS was used, in the future the
design of the test could be improved by placing the description of the scale at
every question or using other means to make the scale more obvious. Further-
more, participants could be made aware to check their answers with regard to
the questionnaire scale before they hand it in. Additionally, there is an issue
in applying the test to non-native English speakers. Several participants did
not understand the word cumbersome. This issue has already been identified
in [Fi06], with the recommended solution being the substitution of the word
cumbersome with awkward or cumbersome/awkward. During the test, several
participants asked to clarify the meaning of the the word cumbersome and it
was explained to the participant. While it might not have influenced the test
outcome, it is recommended to use the changed version of the test for non-
native English speakers in the future. As a general remark, some of the issues
identified could have been identified and iterated upon without a functional
prototype, but with the use of low- and high-fidelity prototyping which would
have taken less effort and potentially increased product quality faster.

60

Part V.

Conclusion

61

7. Conclusion and Outlook

7.1. Conclusion

The aim of this thesis was to implement a specific client for SocioCortex, the
SocioCortex Content Manager. The client combines concepts from the hybrid
wiki with the task-oriented approach of the Darwin Wiki. It provides the user
with a generic interface to manipulate data from SocioCortex. Overall, the
client was implemented following the constraints regarding use cases, design,
and technologies.

The use cases were collected, defined, and elaborated before the implemen-
tation of the client. During the development, relevant design and technical
challenges have been solved or documented for future work.

Finally, the implemented version was evaluated with 6 participants in a usabil-
ity test with a post-test questionnaire. The standardized questionnaire which
was used, the system usability scale (SUS), resulted in a score indicating a
slightly below average usability.

7.2. Outlook

The result of this work, the SocioCortex Content Manager, can be expanded
and improved in several aspects. First of all, the potential improvements
suggested based on the evaluation in 6.5 should be evaluated, tested, and
implemented. Fixing the identified problems will help to increase the current
usability score.

62

7. Conclusion and Outlook

The SocioCortex Content Manager should also be integrated with the indepen-
dently developed project for the data tables. This will provide a better way
to navigate entity instances and edit multiple attribute values on the same
screen, benefiting from the advantages of a spreadsheet-like user interface.

As described in Section 5.5.2, the currently used front-end JavaScript frame-
work AngularJS 1.x has major drawbacks which are solved by other JavaScript
frameworks and will be potentially solved by the next iteration of AngularJS.
A migration to a different framework or the next version of AngularJS will
likely require a major rewrite of large parts of the application. Because of
this, it should be evaluated if continued development with the current frame-
work is the best choice as the migration effort for a larger code base will only
increase.

Additionally, it should be evaluated to use a more user-centered design process.
This will help to discover and fix potential usability problems before the cost
for the development of a functional prototype has already been invested.

Another area of potential improvement is a better integration among the So-
cioCortex Content Manager and the SocioCortex Modeler. Currently, the two
clients are not integrated. However, some users might need to use both clients
in order to fulfill certain tasks. An example for an improvement is a better
navigation between the entity instances in the SocioCortex Content Manager
and the entity types in the SocioCortex Modeler. A specific use case for using
both clients is a single user having the task to model a certain workflow and
adding the data himself.

63

Bibliography

[Anga] Angular Material. https://material.angularjs.org/latest/.
Last accessed on September 2016.

[Angb] AngularJS. https://angularjs.org/. Last accessed on September
2016.

[BKM09] Bangor, A.; Kortum, P.; Miller, J.: Determining what individual SUS
scores mean: Adding an adjective rating scale. Journal of usability
studies. 4(3):114–123. 2009.

[Bo96] Brooke, J.; others: SUS-A quick and dirty usability scale. Usability
evaluation in industry. 189(194):4–7. 1996.

[Bow] Bower Package Manager. https://bower.io/. Last accessed on
September 2016.

[Br12] Bry, F.; Schaffert, S.; Vrandečić, D.; Weiand, K.: Semantic wikis:
Approaches, applications, and perspectives. In Reasoning Web In-
ternational Summer School. pages 329–369. Springer. 2012.

[Bü15] Bürgin, P.: Design and Prototypical Implementation of a Dashboard
System for Visualizing Semi-Structured Data in a Traceable Way
Design and Prototypical Implementation of a Dashboard System for
Visualizing Semi-Structured Data in a Traceable Way Design and
Prototypical Implementation of a Dashboard System for Visualizing
Semi-Structured Data in a Traceable Way. Master’s thesis. 2015.

[FAB] Material Design Floating Action Button. https://material.

google.com/components/buttons-floating-action-button.

html. Last accessed on September 2016.

64

https://material.angularjs.org/latest/
https://angularjs.org/
https://bower.io/
https://material.google.com/components/buttons-floating-action-button.html
https://material.google.com/components/buttons-floating-action-button.html
https://material.google.com/components/buttons-floating-action-button.html

Bibliography

[Fi06] Finstad, K.: The system usability scale and non-native english speak-
ers. Journal of usability studies. 1(4):185–188. 2006.

[GBD09] Gantz, J.; Boyd, A.; Dowling, S.: Tackling Information Overload At
the Source. IDC White Papers. 2009.

[Gi13] Gil, Y.; Knight, A.; Zhang, K.; Zhang, L.; Sethi, R.: An Initial Anal-
ysis of Semantic Wikis. In Proceedings of the Companion Publication
of the 2013 International Conference on Intelligent User Interfaces
Companion. IUI ’13 Companion. pages 109–110. New York, NY,
USA. 2013. ACM.

[Gula] gulp. http://gulpjs.com/. Last accessed on September 2016.

[Gulb] gulp-angular-filesort. https://github.com/klei/

gulp-angular-filesort. Last accessed on September 2016.

[Gulc] gulp-autoprefixer. https://github.com/sindresorhus/

gulp-autoprefixer. Last accessed on September 2016.

[Guld] gulp-concat. https://github.com/contra/gulp-concat. Last ac-
cessed on September 2016.

[Gule] gulp-inject. https://github.com/klei/gulp-inject. Last ac-
cessed on September 2016.

[Gulf] gulp-livereload. https://github.com/vohof/gulp-livereload.
Last accessed on September 2016.

[Gulg] gulp-uglify. https://github.com/terinjokes/gulp-uglify. Last
accessed on September 2016.

[Gulh] gulp-webserver. https://github.com/schickling/

gulp-webserver. Last accessed on September 2016.

[HKM15] Hauder, M.; Kazman, R.; Matthes, F.: Empowering End-Users to
Collaboratively Structure Processes for Knowledge Work. In Interna-
tional Conference on Business Information Systems. pages 207–219.
Springer. 2015.

65

http://gulpjs.com/
https://github.com/klei/gulp-angular-filesort
https://github.com/klei/gulp-angular-filesort
https://github.com/sindresorhus/gulp-autoprefixer
https://github.com/sindresorhus/gulp-autoprefixer
https://github.com/contra/gulp-concat
https://github.com/klei/gulp-inject
https://github.com/vohof/gulp-livereload
https://github.com/terinjokes/gulp-uglify
https://github.com/schickling/gulp-webserver
https://github.com/schickling/gulp-webserver

Bibliography

[Ka15] Optimizing the User Experience of a Social Content Manager for
Casual Users. 2015.

[LC01] Leuf, B.; Cunningham, W.: The Wiki Way: Quick Collaboration on
the Web. Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA. 2001. 0-201-71499-X.

[LR93] Lewis, C.; Rieman, J.: Task-centered user interface design. A Prac-
tical Introductio. 1993.

[Mat] Google Material Design Language. https://material.google.

com/. Last accessed on September 2016.

[Meda] MediaWiki - Editing Wiki Pages. https://www.mediawiki.org/

wiki/MediaWiki. Last accessed on September 2016.

[Medb] MediaWiki - Editing Wiki Pages. https://en.wikipedia.org/

wiki/Wiki. Last accessed on September 2016.

[MNS11] Matthes, F.; Neubert, C.; Steinhoff, A.: Hybrid Wikis: Empower-
ing Users to Collaboratively Structure Information. ICSOFT (1).
11:250–259. 2011.

[NPM] Node Package Manager. https://www.npmjs.com/. Last accessed
on September 2016.

[Os15] Ostner, M.: Design and implementation of a task-centric social con-
tent management application for end-users Design and implemen-
tation of a task-centric social content management application for
end-users Design and implementation of a task-centric social con-
tent management application for end-users. 2015.

[Qui] Quill Editor. https://github.com/quilljs/quill. Last accessed
on September 2016.

[Re16] Reschenhofer, T.; Bhat, M.; Hernandez-Mendez, A.; Matthes,
F.: Lessons learned in aligning data and model evolution in collabo-
rative information systems. In Proceedings of the 38th International
Conference on Software Engineering Companion. pages 132–141.
ACM. 2016.

66

https://material.google.com/
https://material.google.com/
https://www.mediawiki.org/wiki/MediaWiki
https://www.mediawiki.org/wiki/MediaWiki
https://en.wikipedia.org/wiki/Wiki
https://en.wikipedia.org/wiki/Wiki
https://www.npmjs.com/
https://github.com/quilljs/quill

Bibliography

[Sa11] Sauro, J.: Measuring usability with the system usability scale (SUS).
2011.

[Sc16] Schrade, T.: Implementing a Web Client for Integrated Data, Role,
Function, and Task Modelling. Master’s thesis. 2016.

[SCA] sc-angular. https://github.com/sebischair/sc-angular. Last
accessed on September 2016.

[SE14] SEBIS: Software Engineering for Business Information Systems.
2014.

[Sem] Semantic MediaWiki. https://www.semantic-mediawiki.org/.
Last accessed on September 2016.

[Tin] TinyMCE Editor. https://github.com/quilljs/quill. Last ac-
cessed on September 2016.

[Tri] Trix Editor. https://github.com/basecamp/trix. Last accessed
on September 2016.

[Wik] Wikipedia. https://www.wikipedia.org. Last accessed on Septem-
ber 2016.

67

https://github.com/sebischair/sc-angular
https://www.semantic-mediawiki.org/
https://github.com/quilljs/quill
https://github.com/basecamp/trix
https://www.wikipedia.org

A. Appendix

i

A. Appendix

Evaluation Scenario Introduction

Scenario Introduction
In the scenario for this evaluation you are a PhD. Student at the SEBIS chair. You have access to
a new knowledge management system at the chair, SocioCortex.

You are in charge of modeling data for the system as well as using it to support you in your
activities such as overseeing students doing their thesis at the chair.

The following task will cover activites regarding the modeling of data as well as entering data
for a specific use case.

ii

A. Appendix

Evaluation Scenario

Scenario 2 - Generic Client

Task 1: Create a new master thesis
A student is starting a new master thesis at the SEBIS chair. You are responsible in overseeing
his work and want to enter the information in the system to keep other people at the SEBIS
chair informed about the progress.

Create a new master thesis for a student and add the information: title, student name, and start
date.

Task 2: Add an abstract to the newly created master thesis
The student sends you the abstract of his thesis and you want to add it to the page content.
After you have added it to the page, mark the task “Write abstract” as completed.

Task 3: Skip the task “Conduct evaluation” of the master thesis
You decide together with your master thesis student that an evaluation is not necessary for the
thesis and you want to skip it in the system.

Task 4: Upload the file “Company NDA.pdf” to the master thesis
The thesis you are overseeing requires a signed company NDA. You possess the NDA as a PDF file
and want to attach it in the generic client so that other people at the SEBIS chair can see it.
Upload it to the thesis. You find the PDF file on the local computer under “SEBIS Evaluation”.

Additionally, you want to create a new attribute for the master thesis that links to the PDF file
you uploaded.

Task 5: Find and rename the master thesis “Implementation of a knowledge
management tool”
A colleague asks you to rename a master thesis in the system for him. The master thesis in
question is called "Implementation of a knowledge management tool " and he would like you to
rename it to "Implementation of a knowledge management system "

iii

A. Appendix

Evaluation Questionnaire

Questionnaire

Strongly

disagree

Strongly

agree

1. I think that I would like to use this system

frequently

1 2 3 4 5

2. I found the system unnecessarily complex

1 2 3 4 5

3. I thought the system was easy to use

1 2 3 4 5

4. I think that I would need the support of a

technical person to be able to use this system

1 2 3 4 5

5. I found the various functions in this system

were well integrated

1 2 3 4 5

6. I thought there was too much

inconsistency in this system

1 2 3 4 5

7. I would imagine that most people would

learn to use this system very quickly

1 2 3 4 5

8. I found the system very cumbersome to

use

1 2 3 4 5

9. I felt very confident using the system

1 2 3 4 5

iv

A. Appendix

10. I needed to learn a lot of things before I

could get going with this system

1 2 3 4 5

Overall, how does this system compare to Tricia?

Overall, what would you like to change in the system?

Is there any other feedback?

v

A. Appendix

Evaluation Complete SUS Results

vi

A. Appendix

vii

List of Figures

2.1. MediaWiki Homepage running on MediaWiki software [Meda] . 7
2.2. Hybrid wiki meta-model [Re16] 8
2.3. The Darwin Wiki user interface showcasing structural wiki ele-

ments and their visualization [HKM15] 10
2.4. The conceptual model of SocioCortex 12
2.5. SocioCortex architecture with content manager 13
2.6. SocioCortex Modeler[Sc16] . 14
2.7. SocioCortex Visualizer[Bü15] . 15
2.8. Example Mockup for the SocioCortex Content Manager [Ka15] . 15

3.1. The current implementation of data tables 27

4.1. Design of tasks in the ScoioCortex Content Manager [Ka15] . . 30
4.2. Updated design of tasks in the ScoioCortex Content Manager . 30

5.1. Overview of the architecture and technologies of the content
manager . 33

5.2. Overview of the components of the content manager 38
5.3. The behavioral model of SocioCortex. Grey denotes concepts

predominantly relevant for the content manager, green for mod-
eler, white for the visualizer and other clients. 42

5.4. Overview of the steps involved in rendering images inside entity
content . 46

6.1. The floating action button pattern from material design lan-
guage [FAB] . 58

viii

List of Tables

5.1. Table about results of selected operations on the SocioCortex
integrated model relevant for the content manager 41

6.1. Table with SUS results . 57

ix

	Acknowledgments
	Abstract
	Contents
	Outline of the Thesis
	Introduction
	Introduction
	Introduction
	Motivation
	Approach

	Related Work
	Related Work
	Wikis
	Semantic Wikis
	Hybrid Wiki
	Darwin
	SocioCortex
	Conceptual Model of SocioCortex
	Clients for SocioCortex
	Previous Work used as the Foundation of this Thesis

	Approach
	Use Cases
	User Authentication
	Logging in
	Logging out

	Workspaces
	Creating a workspace
	Deleting a workspace
	Renaming a workspace
	Adding a workspace to favorite workspaces
	Removing a workspace from favorite workspaces
	Navigating between workspaces
	Editing workspace settings

	Entities
	Creating an entity
	Deleting an entity
	Renaming an entity
	Duplicating an entity
	Moving an entity
	Editing the content of an entity
	Managing files of an entity
	Editing entity settings

	Attributes
	Editing an attribute
	Creating a free attribute
	Editing a free attribute
	Deleting a free attribute

	Tasks
	Creating new tasks on an entity
	Editing a task
	Deleting a task
	Completing a task
	Skipping a task
	Assigning an attribute to a task
	Removing an attribute from a task

	User Profile
	Data Tables

	Design Challenges
	Use Case Specific Design Challenges
	Workspaces
	Tasks

	General Application Design Challenges
	Material Design
	Mockups and Design Guidelines

	Technical Implementation
	Architecture and Technologies
	Package Management
	Build Management
	Important Front-end Libraries

	Overview of the Application Architecture
	Behavioral Model
	Technical implementation of selected use cases and requirements
	Content Editing Interface
	Images in Entity Content
	Links in Entity Content

	Discussion of general technical implementation aspects
	SocioCortex API
	AngularJS

	Evaluation
	Evaluation
	Methodology
	Usability Test
	Questionnaire

	Participants
	Scenario
	Creating entities
	Editing attributes
	Editing entity content
	Completing tasks
	Skipping tasks
	Uploading files
	Adding and editing free attributes
	Searching entities
	Renaming entities

	Results
	Usability Test
	Questionnaire

	Potential Improvements
	Improving the entity creation process
	Improving the editing of attributes
	Improving the naming of entities

	Discussion

	Conclusion
	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography
	Appendix
	List of Figures
	List of Tables

